PrintForm
Definitions
automata
5
Sections
AutomataTheory
Doc
At:
homo
is
inj
1
1.
Alph:
Type
2.
St:
Type
3.
Auto:
Automata(Alph;St)
c:(St
Alph*). (
q:St. (Result(Auto)c(q)) = q) & Fin(Alph) & Fin(St) & (St ~ (x,y:Alph*//(x LangOf(Auto)-induced Equiv y)))
Inj(St; x,y:Alph*//(x LangOf(Auto)-induced Equiv y); c)
By:
Inst
Thm*
L:LangOver(A). EquivRel x,y:A*. x L-induced Equiv y [Alph;LangOf(Auto)]
Generated subgoal:
1
4.
EquivRel x,y:Alph*. x LangOf(Auto)-induced Equiv y
c:(St
Alph*). (
q:St. (Result(Auto)c(q)) = q) & Fin(Alph) & Fin(St) & (St ~ (x,y:Alph*//(x LangOf(Auto)-induced Equiv y)))
Inj(St; x,y:Alph*//(x LangOf(Auto)-induced Equiv y); c)
About: