PrintForm Definitions automata 5 Sections AutomataTheory Doc

At: homo is inj 1

1. Alph: Type
2. St: Type
3. Auto: Automata(Alph;St)

c:(StAlph*). (q:St. (Result(Auto)c(q)) = q) & Fin(Alph) & Fin(St) & (St ~ (x,y:Alph*//(x LangOf(Auto)-induced Equiv y))) Inj(St; x,y:Alph*//(x LangOf(Auto)-induced Equiv y); c)

By: Inst Thm* L:LangOver(A). EquivRel x,y:A*. x L-induced Equiv y [Alph;LangOf(Auto)]

Generated subgoal:

14. EquivRel x,y:Alph*. x LangOf(Auto)-induced Equiv y
c:(StAlph*). (q:St. (Result(Auto)c(q)) = q) & Fin(Alph) & Fin(St) & (St ~ (x,y:Alph*//(x LangOf(Auto)-induced Equiv y))) Inj(St; x,y:Alph*//(x LangOf(Auto)-induced Equiv y); c)


About:
allfunctionlistimpliesand
equalapplyquotientuniverse