automata 6 Sections AutomataTheory Doc

Def Bij(A; B; f) == Inj(A; B; f) & Surj(A; B; f)

Thm* n:. k:, f:(k(x,y:n*//(x LangOf(OddEven#n)-induced Equiv y))). Bij(k; x,y:n*//(x LangOf(OddEven#n)-induced Equiv y); f) oddeven_minimization

Thm* n:, f:(n(x,y:2*//(x LangOf(Auto4)-induced Equiv y))). Bij(n; x,y:2*//(x LangOf(Auto4)-induced Equiv y); f) auto4_minimization

Thm* n:, f:(n(x,y:3*//(x LangOf(auto3_3())-induced Equiv y))). Bij(n; x,y:3*//(x LangOf(auto3_3())-induced Equiv y); f) auto3_3_minimization

Thm* n:, f:(n(x,y:2*//(x LangOf(auto3_23())-induced Equiv y))). Bij(n; x,y:2*//(x LangOf(auto3_23())-induced Equiv y); f) auto3_23_minimization

Thm* n:, f:(n(x,y:2*//(x LangOf(Auto3_2)-induced Equiv y))). Bij(n; x,y:2*//(x LangOf(Auto3_2)-induced Equiv y); f) auto3_2_minimization

Thm* n:, f:(n(x,y:1*//(x LangOf(Auto3_1)-induced Equiv y))). Bij(n; x,y:1*//(x LangOf(Auto3_1)-induced Equiv y); f) auto3_1_minimization

Thm* n:, f:(n(x,y:3*//(x LangOf(Auto)-induced Equiv y))). Bij(n; x,y:3*//(x LangOf(Auto)-induced Equiv y); f) auto3_minimization

Thm* n:, f:(n(x,y:2*//(x LangOf(Auto)-induced Equiv y))). Bij(n; x,y:2*//(x LangOf(Auto)-induced Equiv y); f) auto2_minimization

Thm* n:, f:(n(x,y:2*//(x LangOf(Auto)-induced Equiv y))). Bij(n; x,y:2*//(x LangOf(Auto)-induced Equiv y); f) auto1_minimization

In prior sections: fun 1 finite sets exponent relation autom