Thm* n:
.
k:
, f:(
k
(x,y:
n*//(x LangOf(OddEven#n)-induced Equiv y))).
Bij(
k; x,y:
n*//(x LangOf(OddEven#n)-induced Equiv y); f)
oddeven_minimization
Thm* n:
, f:(
n
(x,y:
2*//(x LangOf(Auto4)-induced Equiv y))).
Bij(
n; x,y:
2*//(x LangOf(Auto4)-induced Equiv y); f)
auto4_minimization
Thm* n:
, f:(
n
(x,y:
3*//(x LangOf(auto3_3())-induced Equiv y))).
Bij(
n; x,y:
3*//(x LangOf(auto3_3())-induced Equiv y); f)
auto3_3_minimization
Thm* n:
, f:(
n
(x,y:
2*//(x LangOf(auto3_23())-induced Equiv y))).
Bij(
n; x,y:
2*//(x LangOf(auto3_23())-induced Equiv y); f)
auto3_23_minimization
Thm* n:
, f:(
n
(x,y:
2*//(x LangOf(Auto3_2)-induced Equiv y))).
Bij(
n; x,y:
2*//(x LangOf(Auto3_2)-induced Equiv y); f)
auto3_2_minimization
Thm* n:
, f:(
n
(x,y:
1*//(x LangOf(Auto3_1)-induced Equiv y))).
Bij(
n; x,y:
1*//(x LangOf(Auto3_1)-induced Equiv y); f)
auto3_1_minimization
Thm* n:
, f:(
n
(x,y:
3*//(x LangOf(Auto
)-induced Equiv y))).
Bij(
n; x,y:
3*//(x LangOf(Auto
)-induced Equiv y); f)
auto3_minimization
Thm* n:
, f:(
n
(x,y:
2*//(x LangOf(Auto
)-induced Equiv y))).
Bij(
n; x,y:
2*//(x LangOf(Auto
)-induced Equiv y); f)
auto2_minimization
Thm* n:
, f:(
n
(x,y:
2*//(x LangOf(Auto
)-induced Equiv y))).
Bij(
n; x,y:
2*//(x LangOf(Auto
)-induced Equiv y); f)
auto1_minimization
In prior sections: fun 1 finite sets exponent relation autom