PrintForm Definitions automata 7 Sections AutomataTheory Doc

At: empty lang dec 1 1 1 2 1

1. Alph: Type
2. St: Type
3. Auto: Automata(Alph;St)
4. Fin(Alph)
5. n:
6. f:(nSt). Bij(n; St; f)
7. (l:Alph*. LangOf(Auto)(l)) (k:(n+1), l:{l:(Alph*)| ||l|| = k }. LangOf(Auto)(l))

Dec(k:(n+1), l:{l:(Alph*)| ||l|| = k }. LangOf(Auto)(l))

By:
Inst Thm* R:(TProp). Fin(T) & (t:T. Dec(R(t))) Dec(t:T. R(t)) [(n+1);k.l:{l:(Alph*)| ||l|| = k }. LangOf(Auto)(l)]
THEN
Try (Fold `languages` 0)


Generated subgoals:

17. (l:Alph*. LangOf(Auto)(l)) (k:(n+1), l:{l:(Alph*)| ||l|| = k }. LangOf(Auto)(l))
8. (l:Alph*. LangOf(Auto)(l)) (k:(n+1), l:{l:(Alph*)| ||l|| = k }. LangOf(Auto)(l))
Fin((n+1))
27. (l:Alph*. LangOf(Auto)(l)) (k:(n+1), l:{l:(Alph*)| ||l|| = k }. LangOf(Auto)(l))
8. (l:Alph*. LangOf(Auto)(l)) (k:(n+1), l:{l:(Alph*)| ||l|| = k }. LangOf(Auto)(l))
9. t: (n+1)
Dec((k.l:{l:(Alph*)| ||l|| = k }. LangOf(Auto)(l))(t))
38. Dec(t:(n+1). (k.l:{l:(Alph*)| ||l|| = k }. LangOf(Auto)(l))(t))
Dec(k:(n+1), l:{l:(Alph*)| ||l|| = k }. LangOf(Auto)(l))


About:
existsnatural_numberaddsetlistequalintapply
universeallfunctionpropimpliesandlambda