Selected Objects
| Introduction | Introductory Remarks |
| def | bool |
== Unit+Unit |
| def | btrue |
true == inl( ) |
| def | bfalse |
false == inr( ) |
| def | ifthenelse |
if b t else f fi == InjCase(b ; t; f) |
| def | assert |
b == if b True else False fi |
| def | b2i |
b2i(b) == if b 1 else 0 fi |
| THM | b2i_bounds |
b: . 0 b2i(b) & b2i(b) 1 |
| def | bnot |
 b == if b false else true fi |
| def | band |
p q == if p q else false fi |
| def | bor |
p  q == if p true else q fi |
| def | eq_bool |
p= q == (p q)  ( p   q) |
| def | bxor |
p q == (p   q)  ( p q) |
| def | bimplies |
p  q ==  p  q |
| def | rev_bimplies |
p  q == q  p |
| def | eq_int |
i= j == if i=j true ; false fi |
| def | lt_int |
i< j == if i<j true ; false fi |
| def | eq_atom |
x= y Atom == if x=y Atom true ; false fi |
| def | le_int |
i j ==  j< i |
| COM | bool_thms |
================GENERAL THEOREMS================ |
| THM | btrue_neq_bfalse |
true = false |
| THM | bool_cases |
b: . b = true b = false |
| THM | bool_ind |
P:(  Prop). P(false )  P(true )  ( b: . P(b)) |
| THM | decidable__equal_bool |
a,b: . Dec(a = b) |
| THM | bnot_bnot_elim |
p: .    p = p |
| THM | bnot_thru_band |
p,q: .  (p q) = ( p   q) |
| THM | bnot_thru_bor |
p,q: .  (p  q) = ( p   q) |
| THM | bnot_of_le_int |
i,j: .  i j = (j< i) |
| THM | bimplies_weakening |
u,v: . u = v  u  v |
| THM | bimplies_transitivity |
u,v,w: . u  v  v  w  u  w |
| THM | assert_functionality_wrt_bimplies |
u,v: . u  v  u  v |
| COM | bool_simp_1 |
CONSTANT SIMPLIFICATION
... |
| THM | bor_ff_simp |
u: . (u  false ) = u |
| THM | bor_tt_simp |
u: . (u  true ) = true |
| THM | band_ff_simp |
u: . (u false ) = false |
| THM | band_tt_simp |
u: . (u true ) = u |
| COM | assert_com |
`ASSERT'-RELATED THEOREMS |
| THM | assert_of_tt |
true |
| THM | assert_of_ff |
false |
| THM | assert_elim |
b: . b  b = true |
| THM | not_assert_elim |
b: . b  b = false |
| THM | eqtt_to_assert |
b: . b = true  b |
| THM | eqff_to_assert |
b: . b = false   b |
| THM | decidable__assert |
b: . Dec(b) |
| THM | iff_imp_equal_bool |
a,b: . (a  b)  a = b |
| THM | assert_of_eq_atom |
x,y:Atom. x= y Atom  x = y |
| THM | assert_of_eq_int |
x,y: . x= y  x = y |
| THM | neg_assert_of_eq_int |
x,y: . x= y  x y |
| THM | neg_assert_of_eq_atom |
x,y:Atom. x= y Atom  x y |
| THM | assert_of_lt_int |
x,y: . x< y  x<y |
| THM | assert_of_eq_int_rw |
x,y: . x= y  x = y |
| THM | assert_of_eq_bool |
p,q: . p= q  p = q |
| THM | assert_of_bnot |
p: .  p  p |
| THM | assert_of_band |
p,q: . (p q)  p & q |
| THM | assert_of_bor |
p,q: . (p  q)  p q |
| THM | assert_of_bimplies |
p,q: . p  q  (p  q) |
| THM | assert_of_le_int |
x,y: . x y  x y |
| THM | ite_rw_test |
n: , i:{1..n }. 0 = 0 & n = 0  False |
| THM | ite_rw_false |
b: , x,y:T. b  if b x else y fi = y |
| THM | ite_rw_true |
b: , x,y:T. b  if b x else y fi = x |
| THM | fun_thru_ite |
f:(S T), b: , p,q:S. f(if b p else q fi) = if b f(p) else f(q) fi |
| COM | old_bool_1_stuff |
OLD STUFF
... |
| THM | eq_int_eq_false |
i,j: . i j  (i= j) = false |
| THM | eq_int_eq_true |
i,j: . i = j  (i= j) = true |
| THM | eq_int_eq_false_elim |
i,j: . (i= j) = false  i j |
| THM | eq_int_eq_true_elim |
i,j: . (i= j) = true  i = j |
| THM | eq_int_cases_test |
x,y:A, P:(A Prop), i,j: . P(if i= j x else y fi)  P(if i= j x else y fi) |