choice 1 Sections AutomataTheory Doc

Def == {i:| 0i }

Thm* E:(Prop). (EquivRel x,y:. x E y) & (x,y:. Dec(x E y)) (h:(). (n,k:. (n E k) h(n) = h(k)) & (n:. n E (h(n)))) comp_choice

Thm* E:(), n,k:. (EquivRel x,y:. x E y) ((n E k) Min{ x | xEn } = Min{ x | xEk }) min_el_iff

Thm* E:(), n:. (EquivRel x,y:. x E y) (n E Min{ x | xEn }) min_el_sound

Thm* E:(), n,k:. (EquivRel x,y:. x E y) (n E k) Min{ x | xEn } = Min{ x | xEk } min_el_unique

Thm* f:(), n,k:. f(n) = f(k) MinArg(f : {0..n}) = MinArg(f : {0..k}) min_arg_iff

Thm* f:(), n:. f(MinArg(f : {0..n})) = f(n) min_arg_sound

Thm* f:(), n,k:. f(n) = f(k) MinArg(f : {0..n}) = MinArg(f : {0..k}) min_arg_unique

Thm* f:(), n:, i:(n+1). f(n-MinAr(f;i;n)) = f(n) min_ar_sound

Thm* f:(), n:, i:(n+1), j:(n-i+1). f(n-i) = f(n) MinAr(f;j+i;n) = MinAr(f;j;n-i)+i min_ar_alt

Thm* f:(), n:, i:(n+1). MinAr(f;i;n) (i+1) min_ar_wf

In prior sections: int 1 bool 1