core StandardLIB Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Def x:AB(x) == x:AB(x)

is mentioned by

Thm* a:TQ:(TProp). (a = !x:TQ(x))  a  {!x:T | Q(x)}[uni_sat_imp_in_uni_set]
Thm* a:Tx:{a:T}. x = a  T[singleton_properties]
Thm* B:(AType), p:(x:AB(x)), C:Type, b:(x:AB(x)C).
Thm* (p/x,yb(x,y)) = b(1of(p),2of(p))
[spread_to_pi12]
Thm* B:(AType), p:(x:AB(x)), C,D:Type, f:(CD), b:(x:AB(x)C).
Thm* f(p/x,yb(x,y)) = (p/x,yf(b(x,y)))
[fun_thru_spread]
Thm* A,B:Type, a:Ab:(AB). let x = a in b(x B[let_wf]
Thm* (P  Q (Q  P (P  Q)[implies_antisymmetry]
Thm* (P  Q (P  Q)[squash_functionality_wrt_iff]
Thm* (P  Q P  Q[squash_functionality_wrt_implies]
Thm* (P1  P2 (Q1  Q2 P1  Q1  P2  Q2[or_functionality_wrt_implies]
Thm* (P1  P2 (Q1  Q2 (P1  Q1  P2  Q2)[or_functionality_wrt_iff]
Thm* (P  Q P  Q[not_functionality_wrt_implies]
Thm* (P  Q (P  Q)[not_functionality_wrt_iff]
Thm* P,Q:(SProp).
Thm* S = T  (x:SP(x Q(x))  (x:SP(x))  (y:TQ(y))
[exists_functionality_wrt_implies]
Thm* P,Q:(SProp).
Thm* S = T  (x:SP(x Q(x))  ((x:SP(x))  (y:TQ(y)))
[exists_functionality_wrt_iff]
Thm* P,Q:(SProp).
Thm* S = T  (z:SP(z Q(z))  (x:SP(x))  (y:TQ(y))
[all_functionality_wrt_implies]
Thm* P,Q:(SProp).
Thm* S = T  (x:SP(x Q(x))  ((x:SP(x))  (y:TQ(y)))
[all_functionality_wrt_iff]
Thm* (P1  P2 (Q1  Q2 ((P1  Q1 (P2  Q2))[iff_functionality_wrt_iff]
Thm* (P  Q (Dec(P Dec(Q))[decidable_functionality]
Thm* (P1  P2 (Q1  Q2 (P1  Q1 P2  Q2[implies_functionality_wrt_implies]
Thm* (P1  P2 (Q1  Q2 ((P1  Q1 (P2  Q2))[implies_functionality_wrt_iff]
Thm* (P1  P2 (Q1  Q2 P1 & Q1  P2 & Q2[and_functionality_wrt_implies]
Thm* (P1  P2 (Q1  Q2 (P1 & Q1  P2 & Q2)[and_functionality_wrt_iff]
Thm* (P  Q (Q  R P  R[implies_transitivity]
Thm* (P  Q (Q  R (P  R)[iff_transitivity]
Thm* Q:(TProp). (x:TQ(x))  (x:TQ(x))[not_over_exists]
Thm* B:(TProp). (x:TA & B(x))  A & (x:TB(x))[exists_over_and_r]
Thm* A  True  True[or_true_r]
Thm* True  A  True[or_true_l]
Thm* A  False  A[or_false_r]
Thm* False  A  A[or_false_l]
Thm* A & True  A[and_true_r]
Thm* True & A  A[and_true_l]
Thm* A & False  False[and_false_r]
Thm* False & A  False[and_false_l]
Thm* Dec(A ((A & B A  B)[not_over_and]
Thm* A  B  (A & B)[not_over_and_b]
Thm* (A  B A & B[not_over_or_a]
Thm* (A  B A & B[not_over_or]
Thm* A  B  B  A[or_comm]
Thm* A  (B  C (A  B C[or_assoc]
Thm* A & B  B & A[and_comm]
Thm* A & (B & C (A & B) & C[and_assoc]
Thm* (A  B (B  A)[iff_symmetry]
Thm* Dec(A (A  A)[dneg_elim_a]
Thm* Dec(A A  A[dneg_elim]
Thm* SqStable(P (P  P)[squash_elim]
Thm* Dec(P SqStable(P)[sq_stable_from_decidable]
Thm* SqStable(P)[sq_stable__not]
Thm* Stable{P SqStable(P)[sq_stable__from_stable]
Thm* SqStable(P)[sq_stable__squash]
Thm* x,y:A. SqStable(x = y)[sq_stable__equal]
Thm* P:(AProp). (x:A. SqStable(P(x)))  SqStable(x:AP(x))[sq_stable__all]
Thm* SqStable(P SqStable(Q SqStable(P  Q)[sq_stable__iff]
Thm* SqStable(Q SqStable(P  Q)[sq_stable__implies]
Thm* SqStable(P SqStable(Q SqStable(P & Q)[sq_stable__and]
Thm* Dec(P Stable{P}[stable__from_decidable]
Thm* f,g:(AB). (x:A. Stable{f(x) = g(x)})  Stable{f = g}[stable__function_equal]
Thm* Stable{P}[stable__not]
Thm* Dec(A (A  B Dec(B)[iff_preserves_decidability]
Thm* a,b:Atom. Dec(a = b)[decidable__atom_equal]
Thm* i,j:. Dec(i = j)[decidable__int_equal]
Thm* Dec(P Dec(Q Dec(P  Q)[decidable__iff]
Thm* Dec(P Dec(Q Dec(P  Q)[decidable__implies]
Thm* Dec(P Dec(Q Dec(P & Q)[decidable__and]
Thm* Dec(P Dec(Q Dec(P  Q)[decidable__or]
Thm* a:Unit. a = [unit_triviality]
Thm* B:(AType), p:(a:AB(a)). <1of(p),2of(p)> = p  a:AB(a)[pair_eta_rw]
Thm* A:Type, B:(AType), p:(a:AB(a)). 2of(p B(1of(p))[pi2_wf]
Thm* A:Type, a:A. (a  A Type[member_wf]
Def a = !x:TQ(x) == Q(a) & (a':TQ(a' a' = a)[uni_sat]
Def {!x:T | P(x)} == {x:TP(x) & (y:TP(y y = x) }[unique_set]
Def XM == P:Prop. Dec(P)[xmiddle]
Def S  T == x:Sx  T[subtype]

Try larger context: StandardLIB IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

core StandardLIB Doc