def | unit |
![]() ![]() |
def | true |
![]() ![]() |
def | false |
|
def | and |
![]() |
def | or |
![]() |
def | implies |
![]() ![]() ![]() ![]() |
def | rev_implies |
![]() ![]() ![]() ![]() |
def | squash |
![]() |
def | not |
![]() ![]() ![]() |
def | nequal |
![]() ![]() ![]() ![]() |
def | iff |
![]() ![]() ![]() ![]() ![]() ![]() |
def | exists |
![]() ![]() |
def | sq_exists |
![]() ![]() |
def | all |
![]() ![]() ![]() |
def | le |
![]() ![]() |
def | ge |
![]() ![]() |
def | gt |
|
def | subtype |
![]() ![]() ![]() |
def | top |
|
COM | core_2_summary | General-purpose definitions andtheorems. |
COM | core_2_intro | Introduces a variety of general-purpose definitions andtheorems. |
def | infix_ap |
|
def | label |
|
def | guard |
|
def | error |
|
def | prop |
|
def | cand |
![]() |
COM | COMBS_acom | Common Combinators |
def | icomb |
|
def | kcomb |
|
def | scomb |
|
COM | PRODUCT_DEFS_acom | Projection functions for pairs |
def | pi1 |
|
def | pi2 |
|
THM | pair_eta_rw |
![]() ![]() ![]() ![]() ![]() ![]() |
def | spread3 |
|
def | spread4 |
|
def | spread5 |
== u/a,zz1. zz1/b,zz2. zz2/c,zz3. zz3/d,e. v(a;b;c;d;e) |
def | spread6 |
== u/a,zz1. zz1/b,zz2. zz2/c,zz3. zz3/d,zz4. zz4/e,f. v(a;b;c;d;e;f) |
def | spread7 |
== u/a,zz1. == zz1/b,zz2. zz2/c,zz3. zz3/d,zz4. zz4/e,zz5. zz5/f,g. v(a;b;c;d;e;f;g) |
COM | UNIT_DEFS_acom | Inhabitant of Unit type |
def | it |
![]() |
THM | unit_triviality |
![]() ![]() |
COM | CONSTR_PROPERTIES_com | Predicates for constructive properties of propositions, andlemmas characterizing how these predicates are inherited.Worthwhile sometime redoing thms for soft abstractionsin terms of the underlying hard abstractions / primitives. |
def | decidable |
![]() ![]() |
THM | decidable__or |
![]() ![]() ![]() ![]() ![]() |
THM | decidable__and |
![]() ![]() ![]() ![]() |
THM | decidable__implies |
![]() ![]() ![]() ![]() ![]() ![]() |
THM | decidable__false |
|
THM | decidable__iff |
![]() ![]() ![]() ![]() ![]() ![]() |
THM | decidable__int_equal |
![]() ![]() |
THM | decidable__atom_equal |
![]() |
THM | iff_preserves_decidability |
![]() ![]() ![]() ![]() ![]() ![]() |
def | stable |
![]() ![]() ![]() ![]() |
THM | stable__not |
![]() |
THM | stable__function_equal |
![]() ![]() ![]() ![]() ![]() ![]() |
THM | stable__from_decidable |
![]() ![]() |
def | sq_stable |
![]() ![]() ![]() |
THM | sq_stable__and |
![]() ![]() ![]() ![]() |
THM | sq_stable__implies |
![]() ![]() ![]() ![]() |
THM | sq_stable__iff |
![]() ![]() ![]() ![]() ![]() ![]() |
THM | sq_stable__all |
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
THM | sq_stable__equal |
![]() |
THM | sq_stable__squash |
![]() |
THM | sq_stable__from_stable |
![]() ![]() |
THM | sq_stable__not |
![]() |
THM | sq_stable_from_decidable |
![]() ![]() |
def | xmiddle |
![]() |
THM | squash_elim |
![]() ![]() ![]() ![]() ![]() |
COM | LOGIC_THMS_tcom | Theorems of inituitionistic propositional and predicate logic. |
THM | dneg_elim |
![]() ![]() ![]() ![]() ![]() ![]() |
THM | dneg_elim_a |
![]() ![]() ![]() ![]() ![]() ![]() |
THM | iff_symmetry |
![]() ![]() ![]() ![]() ![]() ![]() |
THM | and_assoc |
![]() ![]() |
THM | and_comm |
![]() ![]() |
THM | or_assoc |
![]() ![]() ![]() ![]() ![]() ![]() |
THM | or_comm |
![]() ![]() ![]() ![]() |
THM | not_over_or |
![]() ![]() ![]() ![]() ![]() ![]() |
THM | not_over_or_a |
![]() ![]() ![]() ![]() ![]() ![]() |
THM | not_over_and_b |
![]() ![]() ![]() ![]() ![]() ![]() |
THM | not_over_and |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
THM | and_false_l |
![]() ![]() |
THM | and_false_r |
![]() ![]() |
THM | and_true_l |
![]() ![]() |
THM | and_true_r |
![]() ![]() |
THM | or_false_l |
![]() ![]() ![]() |
THM | or_false_r |
![]() ![]() ![]() |
THM | or_true_l |
![]() ![]() ![]() |
THM | or_true_r |
![]() ![]() ![]() |
THM | exists_over_and_r |
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
THM | not_over_exists |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
COM | EQUALITY_THMS_tcom | Equality Theorems |
COM | REWRITE_SUPPORT_tcom | Lemma support for rewriting. |
THM | iff_transitivity |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
THM | implies_transitivity |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
THM | and_functionality_wrt_iff |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
THM | and_functionality_wrt_implies |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
THM | implies_functionality_wrt_iff |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
THM | implies_functionality_wrt_implies |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
THM | decidable_functionality |
![]() ![]() ![]() ![]() ![]() ![]() |
THM | iff_functionality_wrt_iff |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
THM | all_functionality_wrt_iff |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
THM | all_functionality_wrt_implies |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
THM | exists_functionality_wrt_iff |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
THM | exists_functionality_wrt_implies |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
THM | not_functionality_wrt_iff |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
THM | not_functionality_wrt_implies |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
THM | or_functionality_wrt_iff |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
THM | or_functionality_wrt_implies |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
THM | squash_functionality_wrt_implies |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
THM | squash_functionality_wrt_iff |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
THM | implies_antisymmetry |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
COM | MISC_DEFS_com | Miscellaneous General Definitions |
def | let |
![]() |
COM | type_inj_acom |
type_inj is intended chiefly for injecting into quotienttypes. For convenience, typing lemmas should be provenfor each application. e.g. ... ![]() |
def | type_inj |
|
THM | fun_thru_spread |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() f(p/x,y. b(x,y)) = (p/x,y. f(b(x,y))) |
THM | spread_to_pi12 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() (p/x,y. b(x,y)) = b(1of(p),2of(p)) |
def | singleton |
![]() |
THM | singleton_properties |
![]() ![]() |
def | unique_set |
![]() ![]() ![]() |
def | uni_sat |
![]() ![]() ![]() |
THM | uni_sat_imp_in_uni_set |
![]() ![]() ![]() ![]() ![]() ![]() |
def | ycomb |
![]() ![]() |