core StandardLIB Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Def P  Q == (P  Q) & (P  Q)

is mentioned by

Thm* (P  Q (Q  P (P  Q)[implies_antisymmetry]
Thm* (P  Q (P  Q)[squash_functionality_wrt_iff]
Thm* (P1  P2 (Q1  Q2 (P1  Q1  P2  Q2)[or_functionality_wrt_iff]
Thm* (P  Q (P  Q)[not_functionality_wrt_iff]
Thm* P,Q:(SProp).
Thm* S = T  (x:SP(x Q(x))  ((x:SP(x))  (y:TQ(y)))
[exists_functionality_wrt_iff]
Thm* P,Q:(SProp).
Thm* S = T  (x:SP(x Q(x))  ((x:SP(x))  (y:TQ(y)))
[all_functionality_wrt_iff]
Thm* (P1  P2 (Q1  Q2 ((P1  Q1 (P2  Q2))[iff_functionality_wrt_iff]
Thm* (P  Q (Dec(P Dec(Q))[decidable_functionality]
Thm* (P1  P2 (Q1  Q2 ((P1  Q1 (P2  Q2))[implies_functionality_wrt_iff]
Thm* (P1  P2 (Q1  Q2 (P1 & Q1  P2 & Q2)[and_functionality_wrt_iff]
Thm* (P  Q (Q  R (P  R)[iff_transitivity]
Thm* Q:(TProp). (x:TQ(x))  (x:TQ(x))[not_over_exists]
Thm* B:(TProp). (x:TA & B(x))  A & (x:TB(x))[exists_over_and_r]
Thm* A  True  True[or_true_r]
Thm* True  A  True[or_true_l]
Thm* A  False  A[or_false_r]
Thm* False  A  A[or_false_l]
Thm* A & True  A[and_true_r]
Thm* True & A  A[and_true_l]
Thm* A & False  False[and_false_r]
Thm* False & A  False[and_false_l]
Thm* Dec(A ((A & B A  B)[not_over_and]
Thm* (A  B A & B[not_over_or_a]
Thm* (A  B A & B[not_over_or]
Thm* A  B  B  A[or_comm]
Thm* A  (B  C (A  B C[or_assoc]
Thm* A & B  B & A[and_comm]
Thm* A & (B & C (A & B) & C[and_assoc]
Thm* (A  B (B  A)[iff_symmetry]
Thm* Dec(A (A  A)[dneg_elim_a]
Thm* SqStable(P (P  P)[squash_elim]
Thm* SqStable(P SqStable(Q SqStable(P  Q)[sq_stable__iff]
Thm* Dec(A (A  B Dec(B)[iff_preserves_decidability]
Thm* Dec(P Dec(Q Dec(P  Q)[decidable__iff]

Try larger context: StandardLIB IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

core StandardLIB Doc