det automata Sections AutomataTheory Doc

Def Result(DA)l == if null(l) InitialState(DA) else DA((Result(DA)tl(l)),hd(l)) fi (recursive)

Thm* Auto:Automata(Alph;St). Fin(Alph) Fin(St) (s:St. Dec(w:Alph*. (Result(Auto)w) = s)) reach_dec

Thm* Auto:Automata(Alph;St). Fin(St) & Fin(Alph) (RL:St*. s:St. (w:Alph*. (Result(Auto)w) = s) mem_f(St;s;RL)) reach_list

Thm* Auto:Automata(Alph;St), l:Alph*. ( < St,l,s. Auto(s,l) > :lInitialState(Auto)) = (Result(Auto)l) action_auto

Thm* Auto:Automata(Alph;St) , l:x,y:Alph*//((Result(Auto)x) = (Result(Auto)y)). Auto(l) accept_list_qwf

Thm* Auto:Automata(Alph;St), x,y,z:Alph*. (Result(Auto)x) = (Result(Auto)y) (Result(Auto)z @ x) = (Result(Auto)z @ y) compute_l_inv

Thm* Auto:Automata(Alph;St) , l:x,y:Alph*//((Result(Auto)x) = (Result(Auto)y)). (Result(Auto)l) St compute_list_qwf