Thm*
S:ActionSet(Alph), si:S.car, nn:
, f:(
nn![]()
Alph), g:(Alph![]()
![]()
nn).
Fin(S.car) ![]()
InvFuns(
nn; Alph; f; g) ![]()
(
n:
.
RL:{y:{x:(S.car*)| 0 < ||x|| & ||x||
n+1 }| y[(||y||-1)] = si }.
(
s:S.car. (
w:Alph*. (S:w
si) = s) ![]()
mem_f(S.car;s;RL))
||RL|| = n+1
& (
i:
||RL||, j:
i.
RL[i] = RL[j])
& (
s:S.car. mem_f(S.car;s;RL) ![]()
(
w:Alph*. (S:w
si) = s))
& (
k:
.
k
nn ![]()
(
RLa:S.car*.
(
i:{1..||RL||
}, a:Alph.
mem_f(S.car;S.act(a,RL[i]);RL)
mem_f(S.car;S.act(a,RL[i]);RLa))
& (
a:Alph.
g(a) < k ![]()
mem_f(S.car;S.act(a,hd(RL));RL)
mem_f(S.car;S.act(a,hd(RL));RLa))
& (
s:S.car. mem_f(S.car;s;RLa) ![]()
(
w:Alph*. (S:w
si) = s)))))
reach_lemma
In prior sections: int 1 bool 1 int 2 list 1 finite sets list 3 autom