Origin Definitions Sections Support(jlc) Doc

discrete_jlc
Nuprl Section: discrete_jlc - Basics of Discrete Types
Selected Objects
defdiscreteDiscrete{T} == x,y:T. Dec(x = y)
THMdiscrete_implies_bool_equalityDiscrete{T} (f:(TT). x,y:T. f(x,y) x = y)
defdiscrete_equality{T=} == {eq:(TT)| x,y:T. eq(x,y) x = y }
THMdiscrete_equality_inc{T=} (TT)
THMdiscrete_equality_propertieseq:{T=}. (x,y:T. eq(x,y) x = y) & eq TT
THMdiscrete_implies_discrete_equalityDiscrete{T} (f:{T=}. True)
THMdiscrete_equality_uniquef1,f2:{T=}. f1 = f2 TT
THMdiscrete_equality_reflexiveeq:{T=}, u:T. eq(u,u)
THMdiscrete_equality_symmetriceq:{T=}, x,y:T. eq(x,y) eq(y,x)
THMdiscrete_equality_transitiveeq:{T=}, x,y,z:T. eq(x,y) eq(y,z) eq(x,z)
THMdiscrete__unionT1:Type{i}, T2:Type{j}. Discrete{T1} Discrete{T2} Discrete{(T1+T2)}
THMdiscrete__productT1:Type{i}, T2:Type{j}. Discrete{T1} Discrete{T2} Discrete{(T1T2)}
THMdiscrete__atomDiscrete{Atom}

Origin Definitions Sections Support(jlc) Doc