DiscreteMath Sections DiscrMathExt Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Def  Finite(A) == n:A ~ n

is mentioned by

Thm*  Dedekind-Infinite(A Finite(A)[dedekind_imp_nonfin]
Thm*  Finite()[nat_not_finite]
Thm*  (A:Type. Finite(A Infinite(A))  (D:Type. (D (D))[absurd_nonfinite_imp_infinite]
Thm*  (A:Type. Finite(A Unbounded(A))  (P:Prop. P  P)[nonfin_eqv_unb_inf_iff_negnegelim]
Thm*  (A:Type. Finite(A Unbounded(A))  (D:Type. (D (D))[absurd_nonfin_imp_unb_inf]
Thm*  (P:Prop. P  P (A:Type. Finite(A Unbounded(A))[negnegelim_imp_notfin_imp_unb_inf]
Thm*  Infinite(A Finite(A)[infinite_imp_nonfinite]
Thm*  Unbounded(A Finite(A)[unb_inf_not_fin]
Thm*  (A:Type, R:(AAProp).
Thm*  ((A) & (Trans x,y:AR(x;y)) & (x:Ay:AR(x;y))
Thm*  ((x:AR(x;x))
Thm*  (& Finite(A))
[no_finite_model]
Thm*  (A ~ B Finite(A Finite(B)[ooc_preserves_finiteness]
Thm*  k:. Finite(k)[nsub_is_finite]

Try larger context: DiscrMathExt IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

DiscreteMath Sections DiscrMathExt Doc