DiscreteMath Sections DiscrMathExt Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Def   == {i:| 0<i }

is mentioned by

Thm*  a,k:a {k}   Type[sized_mset_wf4]
Thm*  k:f:(k inj k). i:f{i} = Id  kk[iter_perm_cycles_uniform2]
Thm*  k:f:(k inj k). i:u:kf{i}(u) = u[iter_perm_cycles_uniform]
Thm*  k:f:(k inj k), u:ki:f{i}(u) = u[compose_iter_inj_cycles]
Thm*  f:(AA), i:f{i} = f{i-1} o f[compose_iter_pos_comp2]
Thm*  f:(AA), i:x:Af{i}(x) = f{i-1}(f(x))[compose_iter_pos2]
Thm*  f:(AA), i:f{i} = f o f{i-1}[compose_iter_pos_comp]
Thm*  f:(AA), i:x:Af{i}(x) = f(f{i-1}(x))[compose_iter_pos]
Thm*  (k:k) ~ [card_nat_vs_nat_tuples]
Thm*  k:. (k) ~ [card_nat_vs_nat_tuple]
Thm*  A:Type, n:x:Axs:((n-1)A). [xxs nA[seq_cons_wf]
Thm*  k:k! = k(k-1)!  [factorial_via_intseg_step_rw]
Thm*  0!  [factorial_via_intseg_zero]
Thm*  a,b:. (a inj b) ~ (b((a-1) inj (b-1)))[card_nsub_inj_vs_lopped]
Thm*  R:(AAProp). 
Thm*  (A) & (Trans x,y:AR(x;y)) & (x:Ay:AR(x;y))
Thm*  
Thm*  (k:f:(kA). i,j:ki<j  R(f(i);f(j)))
[no_finite_model_lemma]
Thm*   ~ [nat_plus_ooc_nat]
Thm*  a:b:j:bf:((a-1) inj {x:bx = j }).
Thm*  (i.if i=a-1 j else f(i) fi)  a inj b
[nsub_inj_fill_typing]
Thm*  a:b:f:(a inj b). f  (a-1) inj {x:bx = f(a-1) }[nsub_inj_lop_typing]

In prior sections: int 1 int 2 num thy 1 SimpleMulFacts IteratedBinops

Try larger context: DiscrMathExt IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

DiscreteMath Sections DiscrMathExt Doc