| Some definitions of interest. |
|
biject | Def Bij(A; B; f) == Inj(A; B; f) & Surj(A; B; f) |
| | Thm* A,B:Type, f:(A B). Bij(A; B; f) Prop |
|
equiv_rel | Def EquivRel x,y:T. E(x;y)
Def == Refl(T;x,y.E(x;y)) & (Sym x,y:T. E(x;y)) & (Trans x,y:T. E(x;y)) |
| | Thm* T:Type, E:(T T Prop). (EquivRel x,y:T. E(x;y)) Prop |
|
iff | Def P  Q == (P  Q) & (P  Q) |
| | Thm* A,B:Prop. (A  B) Prop |
|
inject | Def Inj(A; B; f) == a1,a2:A. f(a1) = f(a2) B  a1 = a2 |
| | Thm* A,B:Type, f:(A B). Inj(A; B; f) Prop |
|
int_seg | Def {i..j } == {k: | i k < j } |
| | Thm* m,n: . {m..n } Type |
|
nat | Def == {i: | 0 i } |
| | Thm* Type |
|
le | Def A B == B<A |
| | Thm* i,j: . (i j) Prop |
|
one_one_corr_2 | Def A ~ B == f:(A B), g:(B A). InvFuns(A;B;f;g) |
| | Thm* A,B:Type. (A ~ B) Prop |
|
surject | Def Surj(A; B; f) == b:B. a:A. f(a) = b |
| | Thm* A,B:Type, f:(A B). Surj(A; B; f) Prop |