| Some definitions of interest. |
|
inv_funs | Def InvFuns(A; B; f; g) == g o f = Id & f o g = Id |
|
| Thm* A,B:Type, f:(A B), g:(B A). InvFuns(A; B; f; g) Prop |
|
compose | Def (f o g)(x) == f(g(x)) |
|
| Thm* A,B,C:Type, f:(B C), g:(A B). f o g A C |
|
| Thm* A,B,C:Type, f:(B inj C), g:(A inj B). f o g A inj C |
|
| Thm* f:(B onto C), g:(A onto B). f o g A onto C |
|
iff | Def P  Q == (P  Q) & (P  Q) |
|
| Thm* A,B:Prop. (A  B) Prop |
|
inv_funs_2 | Def InvFuns(A;B;f;g) == ( x:A. g(f(x)) = x) & ( y:B. f(g(y)) = y) |
|
| Thm* f:(A B), g:(B A). InvFuns(A;B;f;g) Prop |
|
tidentity | Def Id == Id |
|
| Thm* A:Type. Id A A |