| Some definitions of interest. |
|
biject | Def Bij(A; B; f) == Inj(A; B; f) & Surj(A; B; f) |
| | Thm* A,B:Type, f:(AB). Bij(A; B; f) Prop |
|
injection_type | Def A inj B == {f:(AB)| Inj(A; B; f) } |
| | Thm* A,B:Type. A inj B Type |
|
int_seg | Def {i..j} == {k:| i k < j } |
| | Thm* m,n:. {m..n} Type |
|
is_discrete | Def A Discrete == x,y:A. Dec(x = y) |
| | Thm* A:Type. (A Discrete) Prop |
|
nat | Def == {i:| 0i } |
| | Thm* Type |
|
surject | Def Surj(A; B; f) == b:B. a:A. f(a) = b |
| | Thm* A,B:Type, f:(AB). Surj(A; B; f) Prop |