Definitions DiscreteMath Sections DiscrMathExt Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Some definitions of interest.
bijectDef  Bij(ABf) == Inj(ABf) & Surj(ABf)
Thm*  A,B:Type, f:(AB). Bij(ABf Prop
injection_typeDef  A inj B == {f:(AB)| Inj(ABf) }
Thm*  A,B:Type. A inj B  Type
int_segDef  {i..j} == {k:i  k < j }
Thm*  m,n:. {m..n Type
is_discreteDef  A Discrete == x,y:A. Dec(x = y)
Thm*  A:Type. (A Discrete)  Prop
natDef   == {i:| 0i }
Thm*    Type
surjectDef  Surj(ABf) == b:Ba:Af(a) = b
Thm*  A,B:Type, f:(AB). Surj(ABf Prop

About:
intnatural_numbersetapplyfunctionuniverse
equalmemberpropandallexists!abstraction
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

Definitions DiscreteMath Sections DiscrMathExt Doc