| Some definitions of interest. |
|
int_seg | Def {i..j} == {k:| i k < j } |
| | Thm* m,n:. {m..n} Type |
|
one_one_corr_2 | Def A ~ B == f:(AB), g:(BA). InvFuns(A;B;f;g) |
| | Thm* A,B:Type. (A ~ B) Prop |
|
inv_funs_2 | Def InvFuns(A;B;f;g) == (x:A. g(f(x)) = x) & (y:B. f(g(y)) = y) |
| | Thm* f:(AB), g:(BA). InvFuns(A;B;f;g) Prop |
|
nat | Def == {i:| 0i } |
| | Thm* Type |
|
nat_plus | Def == {i:| 0<i } |
| | Thm* Type |
|
trans | Def Trans x,y:T. E(x;y) == a,b,c:T. E(a;b) E(b;c) E(a;c) |
| | Thm* T:Type, E:(TTProp). (Trans x,y:T. E(x;y)) Prop |