| Some definitions of interest. |
|
compose | Def (f o g)(x) == f(g(x)) |
| | Thm* A,B,C:Type, f:(BC), g:(AB). f o g AC |
| | Thm* A,B,C:Type, f:(B inj C), g:(A inj B). f o g A inj C |
| | Thm* f:(B onto C), g:(A onto B). f o g A onto C |
|
int_seg | Def {i..j} == {k:| i k < j } |
| | Thm* m,n:. {m..n} Type |
|
inv_funs_2 | Def InvFuns(A;B;f;g) == (x:A. g(f(x)) = x) & (y:B. f(g(y)) = y) |
| | Thm* f:(AB), g:(BA). InvFuns(A;B;f;g) Prop |
|
nat | Def == {i:| 0i } |
| | Thm* Type |
|
nat_plus | Def == {i:| 0<i } |
| | Thm* Type |
|
nequal | Def a b T == a = b T |
| | Thm* A:Type, x,y:A. (x y) Prop |
|
not | Def A == A False |
| | Thm* A:Prop. (A) Prop |
|
trans | Def Trans x,y:T. E(x;y) == a,b,c:T. E(a;b) E(b;c) E(a;c) |
| | Thm* T:Type, E:(TTProp). (Trans x,y:T. E(x;y)) Prop |