Definitions DiscreteMath Sections DiscrMathExt Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Some definitions of interest.
composeDef  (f o g)(x) == f(g(x))
Thm*  A,B,C:Type, f:(BC), g:(AB). f o g  AC
Thm*  A,B,C:Type, f:(B inj C), g:(A inj B). f o g  A inj C
Thm*  f:(B onto C), g:(A onto B). f o g  A onto C
one_one_corr_2Def  A ~ B == f:(AB), g:(BA). InvFuns(A;B;f;g)
Thm*  A,B:Type. (A ~ B Prop
inv_funs_2Def  InvFuns(A;B;f;g) == (x:Ag(f(x)) = x) & (y:Bf(g(y)) = y)
Thm*  f:(AB), g:(BA). InvFuns(A;B;f;g Prop
surjection_typeDef  A onto B == {f:(AB)| Surj(ABf) }
Thm*  A,B:Type. A onto B  Type
surjectDef  Surj(ABf) == b:Ba:Af(a) = b
Thm*  A,B:Type, f:(AB). Surj(ABf Prop

About:
setapplyfunctionuniverseequalmember
propandallexists!abstraction
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

Definitions DiscreteMath Sections DiscrMathExt Doc