| Some definitions of interest. |
|
equiv_rel | Def EquivRel x,y:T. E(x;y)
Def == Refl(T;x,y.E(x;y)) & (Sym x,y:T. E(x;y)) & (Trans x,y:T. E(x;y)) |
| | Thm* T:Type, E:(T![](FONT/dash.png) T![](FONT/dash.png) Prop). (EquivRel x,y:T. E(x;y)) Prop |
|
one_one_corr_2 | Def A ~ B == f:(A![](FONT/dash.png) B), g:(B![](FONT/dash.png) A). InvFuns(A;B;f;g) |
| | Thm* A,B:Type. (A ~ B) Prop |
|
trans | Def Trans x,y:T. E(x;y) == a,b,c:T. E(a;b) ![](FONT/eq.png) E(b;c) ![](FONT/eq.png) E(a;c) |
| | Thm* T:Type, E:(T![](FONT/dash.png) T![](FONT/dash.png) Prop). (Trans x,y:T. E(x;y)) Prop |