| Some definitions of interest. |
|
biject | Def Bij(A; B; f) == Inj(A; B; f) & Surj(A; B; f) |
| | Thm* A,B:Type, f:(A![](FONT/dash.png) B). Bij(A; B; f) Prop |
|
iff | Def P ![](FONT/if_big.png) Q == (P ![](FONT/eq.png) Q) & (P ![](FONT/if_big.png) Q) |
| | Thm* A,B:Prop. (A ![](FONT/if_big.png) B) Prop |
|
is_one_one_corr | Def f is 1-1 corr == g:(B![](FONT/dash.png) A). InvFuns(A;B;f;g) |
| | Thm* A,B:Type, f:(A![](FONT/dash.png) B). (f is 1-1 corr) Prop |
|
inv_funs_2 | Def InvFuns(A;B;f;g) == ( x:A. g(f(x)) = x) & ( y:B. f(g(y)) = y) |
| | Thm* f:(A![](FONT/dash.png) B), g:(B![](FONT/dash.png) A). InvFuns(A;B;f;g) Prop |