Definitions DiscreteMath Sections DiscrMathExt Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Some definitions of interest.
exists_uniqueDef  !x:AP(x) == x:A. x is the x:AP(x)
Thm*  A:Type, P:(AProp). (!x:AP(x))  Prop
injectDef  Inj(ABf) == a1,a2:Af(a1) = f(a2 B  a1 = a2
Thm*  A,B:Type, f:(AB). Inj(ABf Prop
is_theDef  x is the u:AP(u) == P(x) & (u:AP(u u = x)
Thm*  A:Type, P:(AProp), x:A. (x is the x:AP(x))  Prop
surjectDef  Surj(ABf) == b:Ba:Af(a) = b
Thm*  A,B:Type, f:(AB). Surj(ABf Prop

About:
applyfunctionuniverseequalmemberprop
impliesandallexists
!abstraction
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

Definitions DiscreteMath Sections DiscrMathExt Doc