Definitions
DiscreteMath
Sections
DiscrMathExt
Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Some definitions of interest.
biject
Def
Bij(
A
;
B
;
f
) == Inj(
A
;
B
;
f
) & Surj(
A
;
B
;
f
)
Thm*
A
,
B
:Type,
f
:(
A
B
). Bij(
A
;
B
;
f
)
Prop
nat
Def
== {
i
:
| 0
i
}
Thm*
Type
le
Def
A
B
==
B
<
A
Thm*
i
,
j
:
. (
i
j
)
Prop
not
Def
A
==
A
False
Thm*
A
:Prop. (
A
)
Prop
About:
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Definitions
DiscreteMath
Sections
DiscrMathExt
Doc