Definitions DiscreteMath Sections DiscrMathExt Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Some definitions of interest.
bijectDef  Bij(ABf) == Inj(ABf) & Surj(ABf)
Thm*  A,B:Type, f:(AB). Bij(ABf Prop
injectDef  Inj(ABf) == a1,a2:Af(a1) = f(a2 B  a1 = a2
Thm*  A,B:Type, f:(AB). Inj(ABf Prop
natDef   == {i:| 0i }
Thm*    Type
leDef  AB == B<A
Thm*  i,j:. (ij Prop
nequalDef  a  b  T == a = b  T
Thm*  A:Type, x,y:A. (x  y Prop
notDef  A == A  False
Thm*  A:Prop. (A Prop
surjectDef  Surj(ABf) == b:Ba:Af(a) = b
Thm*  A,B:Type, f:(AB). Surj(ABf Prop

About:
intnatural_numberless_thansetapplyfunctionuniverseequal
memberpropimpliesandfalseallexists
!abstraction
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

Definitions DiscreteMath Sections DiscrMathExt Doc