Definitions DiscreteMath Sections DiscrMathExt Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Some definitions of interest.
injection_typeDef  A inj B == {f:(AB)| Inj(ABf) }
Thm*  A,B:Type. A inj B  Type
injectDef  Inj(ABf) == a1,a2:Af(a1) = f(a2 B  a1 = a2
Thm*  A,B:Type, f:(AB). Inj(ABf Prop
int_segDef  {i..j} == {k:i  k < j }
Thm*  m,n:. {m..n Type
natDef   == {i:| 0i }
Thm*    Type
nequalDef  a  b  T == a = b  T
Thm*  A:Type, x,y:A. (x  y Prop
notDef  A == A  False
Thm*  A:Prop. (A Prop
one_one_corr_2Def  A ~ B == f:(AB), g:(BA). InvFuns(A;B;f;g)
Thm*  A,B:Type. (A ~ B Prop

About:
intnatural_numbersetapplyfunctionuniverseequal
memberpropimpliesfalseallexists
!abstraction
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

Definitions DiscreteMath Sections DiscrMathExt Doc