Definitions DiscreteMath Sections DiscrMathExt Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Some definitions of interest.
equiv_relDef  EquivRel x,y:TE(x;y)
Def  == Refl(T;x,y.E(x;y)) & (Sym x,y:TE(x;y)) & (Trans x,y:TE(x;y))
Thm*  T:Type, E:(TTProp). (EquivRel x,y:TE(x;y))  Prop
int_segDef  {i..j} == {k:i  k < j }
Thm*  m,n:. {m..n Type
natDef   == {i:| 0i }
Thm*    Type
leDef  AB == B<A
Thm*  i,j:. (ij Prop
one_one_corr_2Def  A ~ B == f:(AB), g:(BA). InvFuns(A;B;f;g)
Thm*  A,B:Type. (A ~ B Prop

About:
intnatural_numberless_thansetfunctionuniverse
memberpropandallexists
!abstraction
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

Definitions DiscreteMath Sections DiscrMathExt Doc