Definitions
DiscreteMath
Sections
DiscrMathExt
Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Some definitions of interest.
biject
Def
Bij(
A
;
B
;
f
) == Inj(
A
;
B
;
f
) & Surj(
A
;
B
;
f
)
Thm*
A
,
B
:Type,
f
:(
A
B
). Bij(
A
;
B
;
f
)
Prop
one_one_corr_fams
Def
(
x
:
A
.
B
(
x
)) ~ (
x'
:
A'
.
B'
(
x'
))
Def
==
f
:(
A
A'
),
g
:(
A'
A
),
F
:(
x
:
A
B
(
x
)
B'
(
f
(
x
))),
G
:(
x
:
A
B'
(
f
(
x
))
B
(
x
)).
Def ==
InvFuns(
A
;
A'
;
f
;
g
) & (
u
:
A
. InvFuns(
B
(
u
);
B'
(
f
(
u
));
F
(
u
);
G
(
u
)))
Thm*
A
:Type,
A'
:Type,
B
:(
A
Type),
B'
:(
A'
Type).
Thm*
((
x
:
A
.
B
(
x
)) ~ (
x'
:
A'
.
B'
(
x'
)))
Prop
About:
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Definitions
DiscreteMath
Sections
DiscrMathExt
Doc