| Some definitions of interest. |
|
allst | Def x:A st P(x). Q(x) == x:A. P(x)  Q(x) |
|
equiv_rel | Def EquivRel x,y:T. E(x;y)
Def == Refl(T;x,y.E(x;y)) & (Sym x,y:T. E(x;y)) & (Trans x,y:T. E(x;y)) |
| | Thm* T:Type, E:(T T Prop). (EquivRel x,y:T. E(x;y)) Prop |
|
one_one_corr_2 | Def A ~ B == f:(A B), g:(B A). InvFuns(A;B;f;g) |
| | Thm* A,B:Type. (A ~ B) Prop |
|
quotient_sep | Def A/E == u,v:A//E(u;v) |