| Some definitions of interest. |
|
equiv_rel | Def EquivRel x,y:T. E(x;y)
Def == Refl(T;x,y.E(x;y)) & (Sym x,y:T. E(x;y)) & (Trans x,y:T. E(x;y)) |
| | Thm* T:Type, E:(TTProp). (EquivRel x,y:T. E(x;y)) Prop |
|
one_one_corr_2 | Def A ~ B == f:(AB), g:(BA). InvFuns(A;B;f;g) |
| | Thm* A,B:Type. (A ~ B) Prop |
|
inv_funs_2 | Def InvFuns(A;B;f;g) == (x:A. g(f(x)) = x) & (y:B. f(g(y)) = y) |
| | Thm* f:(AB), g:(BA). InvFuns(A;B;f;g) Prop |
|
quotient_sep | Def A/E == u,v:A//E(u;v) |