Definitions
DiscreteMath
Sections
DiscrMathExt
Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Some definitions of interest.
nat
Def
== {
i
:
| 0
i
}
Thm*
Type
nat_to_nat_pair
Def
nat_to_nat_pair(
i
) == next_nat_pair{
i
}(<0,0>)
Thm*
nat_to_nat_pair
surject
Def
Surj(
A
;
B
;
f
) ==
b
:
B
.
a
:
A
.
f
(
a
) =
b
Thm*
A
,
B
:Type,
f
:(
A
B
). Surj(
A
;
B
;
f
)
Prop
About:
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Definitions
DiscreteMath
Sections
DiscrMathExt
Doc