| Some definitions of interest. |
|
biject | Def Bij(A; B; f) == Inj(A; B; f) & Surj(A; B; f) |
| | Thm* A,B:Type, f:(AB). Bij(A; B; f) Prop |
|
inject | Def Inj(A; B; f) == a1,a2:A. f(a1) = f(a2) B a1 = a2 |
| | Thm* A,B:Type, f:(AB). Inj(A; B; f) Prop |
|
nat | Def == {i:| 0i } |
| | Thm* Type |
|
nat_to_nat_pair | Def nat_to_nat_pair(i) == next_nat_pair{i}(<0,0>) |
| | Thm* nat_to_nat_pair |
|
surject | Def Surj(A; B; f) == b:B. a:A. f(a) = b |
| | Thm* A,B:Type, f:(AB). Surj(A; B; f) Prop |