Definitions
DiscreteMath
Sections
DiscrMathExt
Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Some definitions of interest.
int_seg
Def
{
i
..
j
} == {
k
:
|
i
k
<
j
}
Thm*
m
,
n
:
. {
m
..
n
}
Type
nat
Def
== {
i
:
| 0
i
}
Thm*
Type
le
Def
A
B
==
B
<
A
Thm*
i
,
j
:
. (
i
j
)
Prop
surjection_type
Def
A
onto
B
== {
f
:(
A
B
)| Surj(
A
;
B
;
f
) }
Thm*
A
,
B
:Type.
A
onto
B
Type
About:
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Definitions
DiscreteMath
Sections
DiscrMathExt
Doc