Definitions DiscreteMath Sections DiscrMathExt Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Some definitions of interest.
iffDef  P  Q == (P  Q) & (P  Q)
Thm*  A,B:Prop. (A  B Prop
int_isegDef  {i...j} == {k:ik & kj }
Thm*  i,j:. {i...j Type
int_segDef  {i..j} == {k:i  k < j }
Thm*  m,n:. {m..n Type
one_one_corr_2Def  A ~ B == f:(AB), g:(BA). InvFuns(A;B;f;g)
Thm*  A,B:Type. (A ~ B Prop
inv_funs_2Def  InvFuns(A;B;f;g) == (x:Ag(f(x)) = x) & (y:Bf(g(y)) = y)
Thm*  f:(AB), g:(BA). InvFuns(A;B;f;g Prop
invisible_wrapperDef  x == x
leltDef  i  j < k == ij & j<k
natDef   == {i:| 0i }
Thm*    Type
leDef  AB == B<A
Thm*  i,j:. (ij Prop

About:
intnatural_numberless_thansetapplyfunctionuniverseequal
memberpropimpliesandallexists!abstraction
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

Definitions DiscreteMath Sections DiscrMathExt Doc