Rank | Theorem | Name |
9 | Thm* a: , b:( a  ). (i: a  b(i)) ~ ( i: a. b(i)) | [card_pi_vs_nsub_pi] |
cites the following: |
0 | Thm* (A ~ 1)  ( ! A) | [card1_iff_inhabited_uniquely] |
3 | Thm* a,b: , c:{a...b}, B:({a..b } Type).
Thm* (i:{a..b } B(i)) ~ ((i:{a..c } B(i)) (i:{c..b } B(i))) | [card_split_prod_intseg_family] |
1 | Thm* f:(A A A), u:A, a,b: , e:({a..b } A).
Thm* a<b  (Iter(f;u) i:{a..b }. e(i)) = f(Iter(f;u) i:{a..b-1 }. e(i),e(b-1)) | [iter_via_intseg_split_last] |
2 | Thm* a,a': . a'-a = 1  ( B:({a..a' } Type). (i:{a..a' } B(i)) ~ B(a)) | [card_prod_family_intseg_singleton_elim] |
8 | Thm* a,b: . ( a b) ~ (a b) | [nsub_mul_rw] |
1 | Thm* a,b: . 0 a b | [mul_bounds_1a] |