Rank | Theorem | Name |
7 | Thm* a: , b:( a  ). (i: a b(i)) ~ ( i: a. b(i)) | [card_sigma_vs_nsub_sigma] |
cites the following: |
0 | Thm* (A ~ 0)  ( A) | [card0_iff_uninhabited] |
5 | Thm* a,b: , c:{a...b}, B:({a..b } Type).
Thm* (i:{a..b } B(i)) ~ ((i:{a..c } B(i))+(i:{c..b } B(i))) | [card_split_sum_intseg_family] |
1 | Thm* f:(A A A), u:A, a,b: , e:({a..b } A).
Thm* a<b  (Iter(f;u) i:{a..b }. e(i)) = f(Iter(f;u) i:{a..b-1 }. e(i),e(b-1)) | [iter_via_intseg_split_last] |
3 | Thm* a,a': . a'-a = 1  ( B:({a..a' } Type). (i:{a..a' } B(i)) ~ B(a)) | [card_sum_family_intseg_singleton_elim] |
6 | Thm* a,b: . ( a+ b) ~ (a+b) | [nsub_add_rw] |