Rank | Theorem | Name |
3 | Thm* Dedekind-Infinite(A)  Infinite(A) | [dedekind_inf_imp_inf] |
cites the following: |
2 | Thm* x:A, f:(A A), k: , i:{0...k}. f{ k}(x) = f{ i}(f{ k-i}(x)) | [compose_iter_sum_rw] |
2 | Thm* Inj(A; A; f)  ( i: . Inj(A; A; f{ i})) | [compose_iter_injection] |
0 | Thm* f:(A A), i: , x:A. f{ i}(x) = f(f{ i-1}(x)) | [compose_iter_pos] |