Rank | Theorem | Name |
8 | Thm* ( A:Type. Finite(A) ![](FONT/if_big.png) Unbounded(A)) ![](FONT/if_big.png) ( P:Prop. ![](FONT/not.png) P ![](FONT/eq.png) P) | [nonfin_eqv_unb_inf_iff_negnegelim] |
cites the following: |
7 | Thm* ( A:Type. Finite(A) ![](FONT/eq.png) Unbounded(A)) ![](FONT/eq.png) ( D:Type. ![](FONT/not.png) (![](FONT/exi.png) D) ![](FONT/eq.png) (![](FONT/exi.png) D)) | [absurd_nonfin_imp_unb_inf] |
0 | Thm* A:Type. P = (![](FONT/exi.png) A) Prop | [inhab_rep_axiom] |
4 | Thm* ( P:Prop. ![](FONT/not.png) P ![](FONT/eq.png) P) ![](FONT/eq.png) ( A:Type. Finite(A) ![](FONT/eq.png) Unbounded(A)) | [negnegelim_imp_notfin_imp_unb_inf] |
4 | Thm* Unbounded(A) ![](FONT/eq.png) Finite(A) | [unb_inf_not_fin] |