| Rank | Theorem | Name |
| 9 | Thm* ( a inj b) ~ (b!a) | [nsub_inj_factorial_tail] |
| cites the following: |
| 1 | Thm* m,k: . m = 0  k!m = 1  | [factorial_tail_via_iter_null] |
| 0 | Thm* (A ~ 1)  ( ! A) | [card1_iff_inhabited_uniquely] |
| 0 | Thm* ( A)  ( ! (A inj B)) | [inj_from_empty_unique] |
| 4 | Thm* m,k: . 1 m k  k!m = k (k-1)!(m-1)  | [factorial_tail_via_iter_step_rw] |
| 2 | Thm* a,b: . ( a inj b) ~ ( b ( (a-1) inj (b-1))) | [card_nsub_inj_vs_lopped] |
| 8 | Thm* a,b: . ( a b) ~ (a b) | [nsub_mul_rw] |
| 8 | Thm* m,k: . k<m  k!m = 0  | [factorial_tail_via_iter_zero] |
| 0 | Thm* (A ~ 0)  ( A) | [card0_iff_uninhabited] |
| 3 | Thm* ( ( m inj k))  m k | [inj_typing_imp_le] |