Rank | Theorem | Name |
2 | Thm* (A ~ A')  (B ~ B')  ((A onto B) ~ (A' onto B')) | [surjection_type_functionality_wrt_ooc] |
cites the following: |
1 | Thm* InvFuns(A;B;f;g)  Surj(A; B; f) & Surj(B; A; g) | [invfuns_are_surj] |
0 | Thm* Surj(A; B; g)  Surj(B; C; f)  Surj(A; C; f o g) | [comp_preserves_surj] |