Definitions DiscreteMath Sections DiscrMathExt Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

Remarks on the Chessboard Proof

We discuss eduprl_sample_contentCHESSBDPF.

Thm*  (AH ~ 8)  ((AH{1...8}) ~ 64)

By a series of rewrites and arithmetic simplifications (the Reduce tactic), the goal is successively reduced down to 64 ~ 64, which is implicitly justified by Auto using Thm*  A ~ A,

The theorems

Thm*  a,b:. {a...b} ~ (1+b-a) and

Thm*  a,b:. (ab) ~ (ab)

are invoked explicitly for rewriting, as is the assumption AH ~ 8. For example, the last rewrite reduces the goal

(88) ~ 64 to

(88) ~ 64

rewriting one part by matching against

Thm*  a,b:. (ab) ~ (ab)

to get the instance

(88) ~ (88).

The principle Thm*  (A ~ A' (B ~ B' ((A ~ B (A' ~ B')) is also implicitly used to justify performing this rewrite inside the "? ~ ?" operator, as is the principle Thm*  (A ~ A' (B ~ B' ((A ~ B (A' ~ B')) for rewriting inside the "??" operator.

A person assembling a proof without this strict top-down method, might establish the following sequence of facts:

AH ~ 8 [by hypothesis]
 
{1...8} ~ 8 [Thm*  a,b:. {a...b} ~ (1+b-a) and arithmetic]
 
(AH{1...8}) ~ (88) [Thm*  (A ~ A' (B ~ B' ((AB) ~ (A'B')) and above]
 
(88) ~ (88) [Thm*  a,b:. (ab) ~ (ab)]
 
(88) ~ 64 [arithmetic]
 
(AH{1...8}) ~ 64 [chaining through the last 3 facts using
Thm*  (A ~ B (B ~ C (A ~ C)]

About:
productintnatural_numberaddsubtractmultiplyuniverseimpliesall
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

Definitions DiscreteMath Sections DiscrMathExt Doc