| Who Cites productively infinite? |
|
productively_infinite | Def Infinite(A) == ( inj A) |
| | Thm* A:Type. Infinite(A) Prop |
|
nat | Def == {i:| 0i } |
| | Thm* Type |
|
injection_type | Def A inj B == {f:(AB)| Inj(A; B; f) } |
| | Thm* A,B:Type. A inj B Type |
|
le | Def AB == B<A |
| | Thm* i,j:. (ij) Prop |
|
inject | Def Inj(A; B; f) == a1,a2:A. f(a1) = f(a2) B a1 = a2 |
| | Thm* A,B:Type, f:(AB). Inj(A; B; f) Prop |
|
not | Def A == A False |
| | Thm* A:Prop. (A) Prop |