Thms exponent Sections AutomataTheory Doc

NOTE: k is just a notation for {0..k}

int_seg Def {i..j} == {k:| i k < j }

Thm* m,n:. {m..n} Type

nat Def == {i:| 0i }

Thm* Type

nat_plus Def == {i:| 0 < i }

Thm* Type

one_one_corr Def A ~ B == f:(AB), g:(BA). InvFuns(A; B; f; g)

Thm* A,B:Type. (A ~ B) Prop

lelt Def i j < k == ij & j < k

le Def AB == B < A

Thm* i,j:. ij Prop

inv_funs Def InvFuns(A; B; f; g) == g o f = Id & f o g = Id

Thm* A,B:Type, f:(AB), g:(BA). InvFuns(A; B; f; g) Prop

not Def A == A False

Thm* A:Prop. (A) Prop

tidentity Def Id == Id

Thm* A:Type. Id AA

compose Def (f o g)(x) == f(g(x))

Thm* A,B,C:Type, f:(BC), g:(AB). f o g AC

identity Def Id(x) == x

Thm* A:Type. Id AA

About:
!abstractionapplyalluniversememberfunctionimpliesfalse
propandequalless_thanintexistssetnatural_number