Selected Objects
THM | nat_add | n,m: . n+m  |
THM | nat_mul | n,m: . n m  |
THM | zero_length_imp_nil | l:T*. ||l|| = 0  l = nil |
THM | rem_quo_unique | n: , r1,r2: n, q1,q2: . r1+q1 n = r2+q2 n  r1 = r2 & q1 = q2 |
THM | div_lt_lbound | a: , n: , k: . a < n k  (a n) < k |
def | en | (rec) en(l) == if null(l) 0 else hd(l)+en(tl(l)) n fi |
THM | en_inj | n: , m: , l1,l2: n*. ||l1|| = m & ||l2|| = m  en(l1) = en(l2)  l1 = l2 |
def | exp | (rec) (base power) == if power= 0 1 else base (base power-1) fi |
THM | exp_functionality | n1,n2,k1,k2: . n1 = n2  k1 = k2  (n1 k1) = (n2 k2) |
THM | exp_zero | m: . (0 m) = 0 |
THM | exp_non_zero | m: , n: . 0 < (m n) |
THM | exp_base | n: . (n 0) = 1 |
THM | exp_step | n,k: . 0 < k  (n k) = n (n k-1) |
THM | fun_enumer | n,m: . f:(( m  n)  (n m)). Bij( m  n; (n m); f) |
THM | auto2_lemma_0 | P:(T Prop). ( x:T. Dec(P(x))) & Dec( x:T. P(x))  Dec( x:T. P(x)) |
THM | auto2_lemma_1 | P,Q:(T Prop). ( t:T. P(t)  Q(t))  ({t:T| P(t) } ~ {t:T| Q(t) }) |
THM | auto2_lemma_3 | R:(Alph* Alph* Prop), n: .
( x:Alph*. R(x,x))
& ( x,y:Alph*. R(x,y)  R(y,x))
& ( x,y,z:Alph*. R(x,y) & R(y,z)  R(x,z))
& ( x,y,z:Alph*. R(x,y)  R((z @ x),z @ y))
& ( w:( n Alph*). l:Alph*. i: n. R(l,w(i)))

( a,b,c:Alph*. ||a|| n n  ( a':Alph*. ||a'|| < ||a|| & R((a @ b),a' @ b) & R((a @ c),a' @ c))) |
THM | auto2_lemma_4 | R:(Alph* Alph* Prop), n: .
( x:Alph*. R(x,x))
& ( x,y:Alph*. R(x,y)  R(y,x))
& ( x,y,z:Alph*. R(x,y) & R(y,z)  R(x,z))
& ( x,y,z:Alph*. R(x,y)  R((z @ x),z @ y))
& ( w:( n Alph*). l:Alph*. i: n. R(l,w(i)))

( a,b,c:Alph*. a':Alph*. ||a'|| < n n & R((a @ b),a' @ b) & R((a @ c),a' @ c)) |
THM | auto2_lemma_5 | n: . Fin(Alph)  Fin({l:(Alph*)| ||l|| = n }) |
THM | auto2_lemma_6 | R:(T Prop). Fin(T) & ( t:T. Dec(R(t)))  Dec( t:T. R(t)) |
THM | auto2_lemma_7 | R:(Alph* Alph* Prop), n: , L:(Alph*  ), m: .
( x:Alph*. R(x,x))
& ( x,y:Alph*. R(x,y)  R(y,x))
& ( x,y,z:Alph*. R(x,y) & R(y,z)  R(x,z))
& ( x,y,z:Alph*. R(x,y)  R((z @ x),z @ y))
& ( w:( n Alph*). l:Alph*. i: n. R(l,w(i)))
& ( v:( m Alph*). l:Alph*. L(l)  ( i: m. R(l,v(i))))
& Fin(Alph)

( x,y:Alph*. Dec( l:Alph*. L(l @ x) = L(l @ y))) |
THM | auto2_lemma_8 | R:(Alph* Alph* Prop), n: , L:(Alph*  ), m: .
( x:Alph*. R(x,x))
& ( x,y:Alph*. R(x,y)  R(y,x))
& ( x,y,z:Alph*. R(x,y) & R(y,z)  R(x,z))
& ( x,y,z:Alph*. R(x,y)  R((z @ x),z @ y))
& ( w:( n Alph*). l:Alph*. i: n. R(l,w(i)))
& ( v:( m Alph*). l:Alph*. L(l)  ( i: m. R(l,v(i))))
& Fin(Alph)

( x,y:Alph*. Dec( l:Alph*. L(l @ x) = L(l @ y))) |
THM | fun_preserves_fin | Fin(S) & Fin(T)  Fin(S T) |
THM | en_ubound | n: , l: n*. en(l) < (n ||l||) |
THM | en_bound | n: , l: n*. en(l) (n ||l||) |
THM | en_surj | n: , m: , k: (n m). l: n*. ||l|| = m & en(l) = k |
def | geom_series | (rec) (q n ) == if n= 0 0 else (q n-1 )+(q n-1) fi |
THM | geom_series_step | q,n: . (q n+1 ) = (q n )+(q n)  |
THM | geom_ndecrease | q,n,i: . (q n ) (q n+i ) |
THM | geom_speed_lbound | q,n: , i: . (q n )+(q n) (q n+i ) |
THM | geom_n_unique | q: , n: , i: , r1: (q n), r2: (q n+i). (q n )+r1 = (q n+i )+r2  False |
THM | geom_unique | q: , n1,n2: , r1: (q n1), r2: (q n2). (q n1 )+r1 = (q n2 )+r2  n1 = n2 & r1 = r2  |
THM | geom_series_limit | q: , a: . n: . (q n ) a < (q n+1 ) |
def | enum | enum(l) == (q ||l|| )+en(l) |
THM | enum_inj | q: , l1,l2: q*. enum(l1) = enum(l2)  l1 = l2 |
THM | enum_surj | q: , a: . l: q*. enum(l) = a |
THM | list_1_1_nat | q: . ( q*) ~  |