Origin Sections AutomataTheory Doc

exponent

Nuprl Section: exponent

Selected Objects
THMnat_addn,m:. n+m
THMnat_muln,m:. nm
THMzero_length_imp_nill:T*. ||l|| = 0 l = nil
THMrem_quo_uniquen:, r1,r2:n, q1,q2:. r1+q1n = r2+q2n r1 = r2 & q1 = q2
THMdiv_lt_lbounda:, n:, k:. a < nk (a n) < k
defen(rec) en(l) == if null(l) 0 else hd(l)+en(tl(l))n fi
THMen_injn:, m:, l1,l2:n*. ||l1|| = m & ||l2|| = m en(l1) = en(l2) l1 = l2
defexp(rec) (basepower) == if power=0 1 else base(basepower-1) fi
THMexp_functionalityn1,n2,k1,k2:. n1 = n2 k1 = k2 (n1k1) = (n2k2)
THMexp_zerom:. (0m) = 0
THMexp_non_zerom:, n:. 0 < (mn)
THMexp_basen:. (n0) = 1
THMexp_stepn,k:. 0 < k (nk) = n(nk-1)
THMfun_enumern,m:. f:((mn)(nm)). Bij(mn; (nm); f)
THMauto2_lemma_0P:(TProp). (x:T. Dec(P(x))) & Dec(x:T. P(x)) Dec(x:T. P(x))
THMauto2_lemma_1P,Q:(TProp). (t:T. P(t) Q(t)) ({t:T| P(t) } ~ {t:T| Q(t) })
THMauto2_lemma_3R:(Alph*Alph*Prop), n:. (x:Alph*. R(x,x)) & (x,y:Alph*. R(x,y) R(y,x)) & (x,y,z:Alph*. R(x,y) & R(y,z) R(x,z)) & (x,y,z:Alph*. R(x,y) R((z @ x),z @ y)) & (w:(nAlph*). l:Alph*. i:n. R(l,w(i))) (a,b,c:Alph*. ||a||nn (a':Alph*. ||a'|| < ||a|| & R((a @ b),a' @ b) & R((a @ c),a' @ c)))
THMauto2_lemma_4R:(Alph*Alph*Prop), n:. (x:Alph*. R(x,x)) & (x,y:Alph*. R(x,y) R(y,x)) & (x,y,z:Alph*. R(x,y) & R(y,z) R(x,z)) & (x,y,z:Alph*. R(x,y) R((z @ x),z @ y)) & (w:(nAlph*). l:Alph*. i:n. R(l,w(i))) (a,b,c:Alph*. a':Alph*. ||a'|| < nn & R((a @ b),a' @ b) & R((a @ c),a' @ c))
THMauto2_lemma_5n:. Fin(Alph) Fin({l:(Alph*)| ||l|| = n })
THMauto2_lemma_6R:(TProp). Fin(T) & (t:T. Dec(R(t))) Dec(t:T. R(t))
THMauto2_lemma_7R:(Alph*Alph*Prop), n:, L:(Alph*), m:. (x:Alph*. R(x,x)) & (x,y:Alph*. R(x,y) R(y,x)) & (x,y,z:Alph*. R(x,y) & R(y,z) R(x,z)) & (x,y,z:Alph*. R(x,y) R((z @ x),z @ y)) & (w:(nAlph*). l:Alph*. i:n. R(l,w(i))) & (v:(mAlph*). l:Alph*. L(l) (i:m. R(l,v(i)))) & Fin(Alph) (x,y:Alph*. Dec(l:Alph*. L(l @ x) = L(l @ y)))
THMauto2_lemma_8R:(Alph*Alph*Prop), n:, L:(Alph*), m:. (x:Alph*. R(x,x)) & (x,y:Alph*. R(x,y) R(y,x)) & (x,y,z:Alph*. R(x,y) & R(y,z) R(x,z)) & (x,y,z:Alph*. R(x,y) R((z @ x),z @ y)) & (w:(nAlph*). l:Alph*. i:n. R(l,w(i))) & (v:(mAlph*). l:Alph*. L(l) (i:m. R(l,v(i)))) & Fin(Alph) (x,y:Alph*. Dec(l:Alph*. L(l @ x) = L(l @ y)))
THMfun_preserves_finFin(S) & Fin(T) Fin(ST)
THMen_uboundn:, l:n*. en(l) < (n||l||)
THMen_boundn:, l:n*. en(l) (n||l||)
THMen_surjn:, m:, k:(nm). l:n*. ||l|| = m & en(l) = k
defgeom_series(rec) (qn) == if n=0 0 else (qn-1)+(qn-1) fi
THMgeom_series_stepq,n:. (qn+1) = (qn)+(qn)
THMgeom_ndecreaseq,n,i:. (qn)(qn+i)
THMgeom_speed_lboundq,n:, i:. (qn)+(qn)(qn+i)
THMgeom_n_uniqueq:, n:, i:, r1:(qn), r2:(qn+i). (qn)+r1 = (qn+i)+r2 False
THMgeom_uniqueq:, n1,n2:, r1:(qn1), r2:(qn2). (qn1)+r1 = (qn2)+r2 n1 = n2 & r1 = r2
THMgeom_series_limitq:, a:. n:. (qn) a < (qn+1)
defenumenum(l) == (q||l||)+en(l)
THMenum_injq:, l1,l2:q*. enum(l1) = enum(l2) l1 = l2
THMenum_surjq:, a:. l:q*. enum(l) = a
THMlist_1_1_natq:. (q*) ~