PrintForm Definitions exponent Sections AutomataTheory Doc

At: auto2 lemma 4


Alph:Type, R:(Alph*Alph*Prop), n:. (x:Alph*. R(x,x)) & (x,y:Alph*. R(x,y) R(y,x)) & (x,y,z:Alph*. R(x,y) & R(y,z) R(x,z)) & (x,y,z:Alph*. R(x,y) R((z @ x),z @ y)) & (w:(nAlph*). l:Alph*. i:n. R(l,w(i))) (a,b,c:Alph*. a':Alph*. ||a'|| < nn & R((a @ b),a' @ b) & R((a @ c),a' @ c))

By: GenUnivCD

Generated subgoal:

11. Alph: Type
2. R: Alph*Alph*Prop
3. n:
4. (x:Alph*. R(x,x)) & (x,y:Alph*. R(x,y) R(y,x)) & (x,y,z:Alph*. R(x,y) & R(y,z) R(x,z)) & (x,y,z:Alph*. R(x,y) R((z @ x),z @ y)) & (w:(nAlph*). l:Alph*. i:n. R(l,w(i)))
5. a: Alph*
6. b: Alph*
7. c: Alph*
a':Alph*. ||a'|| < nn & R((a @ b),a' @ b) & R((a @ c),a' @ c)


About:
alluniversefunctionlistpropimplies
andapplyexistsnatural_numberless_thanmultiply