Thms finite sets Sections AutomataTheory Doc

iff Def P Q == (P Q) & (P Q)

Thm* A,B:Prop. (A B) Prop

lelt Def i j < k == ij & j < k

le Def AB == B < A

Thm* i,j:. ij Prop

nat_plus Def == {i:| 0 < i }

Thm* Type

rev_implies Def P Q == Q P

Thm* A,B:Prop. (A B) Prop

not Def A == A False

Thm* A:Prop. (A) Prop

About:
!abstractionimpliesfalseallpropmember
setintless_thannatural_numberuniverseand