Origin Sections AutomataTheory Doc

finite_sets

Nuprl Section: finite_sets

Selected Objects
THMnot_dec_is_decP:(AProp). (x:A. P(x) P(x)) & (x:A. P(x)) (x:A. P(x)) (x:A. P(x)) (x:A. P(x))
THMrect_enumern,m:. f:(nm(nm)). Bij(nm; (nm); f)
deffiniteFin(s) == n:, f:(ns). Bij(n; s; f)
THMnsub_is_finiten:. Fin(n)
THMbool_is_finiteFin()
THMone2one_preserves_fin(T ~ U) & Fin(T) Fin(U)
THMfin_iff_1_1_nsubFin(T) (m:. m ~ T)
THMdiv_bounds_2n:, x:(nn). (x n) < n
THMprod_fin_is_fint:T. Fin(T) Fin(TT)
THMfin_dec_finn:, T:Type, B:(TProp). (n ~ T) & (t:T. Dec(B(t))) (m:. m ~ {t:T| B(t) })
THMfinite_decidable_subsetB:(TProp). Fin(T) & (t:T. Dec(B(t))) Fin({t:T| B(t) })
THMone_one_preser_finFin(T) & (T ~ S) Fin(S)
THMset_functionR:(STProp). (s:S. Dec(t:T. R(s,t))) (f:({s:S| t:T. R(s,t) }T). s:{s:S| t:T. R(s,t) }. R(s,f(s)))
THMinv_of_fin_is_finf:(TS). Fin(S) & (s:S. Dec(t:T. f(t) = s)) Fin(x,y:T//(f(x) = f(y)))
THMfin_is_decidFin(T) (x,y:T. Dec(x = y))
THMfin_dist_funcFin(St) (eq:(StSt). x,y:St. eq(x,y) x = y)
THMdecid_is_compf:(TProp). (t:T. Dec(f(t))) (g:(T). t:T. f(t) g(t))
THMauto2_list_indP:(Alph*Prop). (n:. (l:Alph*. ||l|| < n P(l)) (l:Alph*. ||l|| = n P(l))) (l:Alph*. P(l))
THMone_one_sym(T ~ S) (S ~ T)
COMphole_descrPigeon-hole principle
THMphole_auxn:{1...}, f:((n+1)n). i:(n+1), j:i. f(i) = f(j)
THMphole_lemman:{1...}, m:{n+1...}, f:(mn). i,j:m. i < j & f(i) = f(j)
defcard#(t)=n == t ~ n