PrintForm Definitions finite sets Sections AutomataTheory Doc

At: fin dec fin


n:, T:Type, B:(TProp). (n ~ T) & (t:T. Dec(B(t))) (m:. m ~ {t:T| B(t) })

By:
Unfold `one_one_corr` 0
THEN
Analyze 0
THEN
NatInd 1
THEN
GenRepD
THEN
ExRepD


Generated subgoals:

11. T: Type
2. B: TProp
3. f: 0T
4. g: T0
5. InvFuns(0; T; f; g)
6. t:T. Dec(B(t))
m:, f:(m{t:T| B(t) }), g:({t:T| B(t) }m). InvFuns(m; {t:T| B(t) }; f; g)
21. n:
2. 0 < n
3. T:Type, B:(TProp). (f:((n-1)T), g:(T(n-1)). InvFuns((n-1); T; f; g)) & (t:T. Dec(B(t))) (m:, f:(m{t:T| B(t) }), g:({t:T| B(t) }m). InvFuns(m; {t:T| B(t) }; f; g))
4. T: Type
5. B: TProp
6. f: nT
7. g: Tn
8. InvFuns(n; T; f; g)
9. t:T. Dec(B(t))
m:, f:(m{t:T| B(t) }), g:({t:T| B(t) }m). InvFuns(m; {t:T| B(t) }; f; g)


About:
alluniversefunctionpropimplies
andnatural_numberapplyexistsset