biject |
Def Bij(A; B; f) == Inj(A; B; f) & Surj(A; B; f)
Thm* |
identity |
Def Id(x) == x
Thm* |
int_seg |
Def {i..j![]() ![]() ![]() Thm* |
nat |
Def ![]() ![]() ![]() Thm* |
surject |
Def Surj(A; B; f) == ![]() ![]() Thm* |
inject |
Def Inj(A; B; f) == ![]() ![]() ![]() ![]() Thm* |
lelt |
Def i ![]() ![]() |
le |
Def A![]() ![]() Thm* |
not |
Def ![]() ![]() ![]() Thm* |
About:
![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |