Thms finite sets Sections AutomataTheory Doc

compose Def (f o g)(x) == f(g(x))

Thm* A,B,C:Type, f:(BC), g:(AB). f o g AC

inject Def Inj(A; B; f) == a1,a2:A. f(a1) = f(a2) B a1 = a2

Thm* A,B:Type, f:(AB). Inj(A; B; f) Prop

int_seg Def {i..j} == {k:| i k < j }

Thm* m,n:. {m..n} Type

nat Def == {i:| 0i }

Thm* Type

surject Def Surj(A; B; f) == b:B. a:A. f(a) = b

Thm* A,B:Type, f:(AB). Surj(A; B; f) Prop

tidentity Def Id == Id

Thm* A:Type. Id AA

lelt Def i j < k == ij & j < k

le Def AB == B < A

Thm* i,j:. ij Prop

identity Def Id(x) == x

Thm* A:Type. Id AA

not Def A == A False

Thm* A:Prop. (A) Prop

About:
!abstractionimpliesfalseallpropmemberapplyuniverse
functionless_thanintandexistsequalsetnatural_number