Definitions graph 1 1 Sections Graphs Doc

Some definitions of interest.
int_seg Def {i..j} == {k:| i k < j }
Thm* m,n:. {m..n} Type
nat Def == {i:| 0i }
Thm* Type
le Def AB == B < A
Thm* i,j:. (ij) Prop
sum Def sum(f(x) | x < k) == primrec(k;0;x,n. n+f(x))
Thm* n:, f:(n). sum(f(x) | x < n)

About:
intnatural_numberaddless_thansetlambda
functionuniversememberpropall
!abstraction

Definitions graph 1 1 Sections Graphs Doc